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Overall Framework:

◆ The overall framework consists of image module, bounding box module, semantic module, and video 
module. 

◆ The logits of each module are added together for object and predicate prediction.
◆ The network outputs scores for each object and predicate.
◆ The overall framework is inspired by RelDN [Zhang et,al., CVPR2019 ]



Ablation Experiments on Different Modules:

◆ Image module is important for obtaining better object accuracy for the current network.
◆ Video module tends to perform better for predicate prediction.



Ablation Experiments on Parameters: (without Video Module)

◆ Details of Image module: 
Resnet module + 2-layered MLP (input dimension -> hidden dimenson -> out dimension ) 

◆ ResNet 152 and ResNet 101 are slightly better than ResNet 50.



Predicate prediction:

◆We compute the distribution of predicate list for each object;
◆We determine the score of each predicate list for all objects (prior scores);
◆We record the scores of each predicate for all objects (predicted scores), which 

is computed through the network;
◆The final score of each predicate list for each object is computed by multiplying 

the prior scores with the predicted scores.



Final results:

Home Action Genome

Our submission:
◆ Image-only module;
◆ Image resolution: 224;
◆ Image feature extraction: ResNet 101;
◆ Object and Predicate prediction: 2-layered MLP with hidden dimension of 256.

https://homeactiongenome.org/leaderboard.html


Summary:

◆ Image module is important for obtaining better accuracy for the current module.
◆Video module tends to perform better for predicate prediction.
◆The network needs to be improved for combining image and video information. 
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