a4 AIST bl

Home Action Genome Challenge:
Task 2

Team: AIST&DENSO

dh

Yasufumi Kawano, Yoshiki Nagasaki,
AIST AIST, Keio University  AIST, Keio University AIST AIST

Hirokatsu Kataoka,



Overall Framework:
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€ The overall framework consists of image module, bounding box module, semantic module, and video
module.
€ T he logits of each module are added together for object and predicate prediction.

€ T he network outputs scores for each object and predicate.
& The overall framework is inspired by RelDN [Zhang et,al., CVPR2019 |




Ablation Experiments on Different Modules:

Module Network Resolution Top-1 Object Accuracy (%) Recall-5 Predicate Accuracy (%)
Image ResNet+MLP 112 71.75 85.88
Video 3D-ResNet 112 65.70 88.70
Video TimeSformer 112 71.08 88.92
Image, Video ResNet+MLP;3D-ResNet 112 73.31 85.62

€ Image module is important for obtaining better object accuracy for the current network.
@ \/ideo module tends to perform better for predicate prediction.



Ablation Experiments on Parameters: (without Video Module)

Module Hidden dimension Resnet LearningRate Top-1 Object Accuracy (%)

Image 256 50 0.0001 72.50
Image 256 50 0.0005 74.05
Image 256 101 0.0005 7517
Image 256 101 0.001 74.24
Image 256 152 0.0005 75.38
Image 512 50 0.0001 73.98
Image 512 50 0.0005 75.12

& Details of Image module:
Resnet module + 2-layered MLP (input dimension -> hidden dimenson -> out dimension )

€ ResNet 152 and ResNet 101 are slightly better than ResNet 50.



Predicate prediction:

@€ \\Ve compute the distribution of predicate list for each object;

& \\Ve determine the score of each predicate list for all objects (prior scores);

& \\Ve record the scores of each predicate for all objects (predicted scores), which
is computed through the network:

€ 1 he final score of each predicate list for each object is computed by multiplying
the prior scores with the predicted scores.



Final results:

Challenge #2: Scene-graph Generation (updated June 9, 2021)
We listed the results up to the third place.

recall@10 recall@20
1 IMBA 0.76569 0.72183 0.80955
2 Layer6 0.68437 0.63398 0.73476
3 AIST&DENSO 0.65797 0.59636 0.71958

Home Action Genome

Our submission:

€ Image-only module;

& Image resolution: 224;

€ Image feature extraction: ResNet 101;

& Object and Predicate prediction: 2-layered MLP with hidden dimension of 256.



https://homeactiongenome.org/leaderboard.html

Summary:

€ Image module is important for obtaining better accuracy for the current module.
@ \/ideo module tends to perform better for predicate prediction.
@ The network needs to be improved for combining image and video information.
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