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1. Abstract
This paper outlines our approach for the Scene Graph

Generation task of the Activity Net’s Home Action Genome
competition in CVPR 2021. Scene Graph Generation is an
important task in computer vision aimed at improving the
semantic understanding of the visual world. Previous works
in constructing scene graphs in images have largely focused
on pairwise models that lack global context information
which can be crucially important to disambiguate complex
scenes. To address this problem recent approaches have in-
corporated relationship graphs between objects. However,
the structure of these graphs is pre-set ahead of time and
not modified during training, so any introduced errors can
propagate into the prediction stage and affect accuracy. In
this work we incorporate information from videos as well
as individual frames to improve performance for this task.
We incorporate prior information from the egocentric views
into our box classifier to improve the classification accu-
racy. We then propose to dynamically infer relationship
graphs using a novel form of attention. Unlike previous
approaches, we don’t assume any pre-existing structure or
order, and attend over all detected objects. Training the at-
tention layers end-to-end enables the model to learn how
to optimally extract contextual information for the target
task. We combine this with relevant features extracted from
a boosting model to obtain state of the art performance.

2. Introduction
Visual relationship detection [19, 13] is an important task

in computer vision aimed at improving the semantic under-
standing of the visual world. While tasks such as recog-
nition [2, 21, 7] and detection [12, 4, 18] focus on iden-
tifying and localizing objects, visual relationship detection
additionally asks to predict relationships between pairs or
groups of objects. Relationship prediction is a challenging
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task since it requires an in-depth understanding of a given
scene and interactions between objects in it. However, it is
also a major component of how we perceive and understand
visual information [10], so successfully solving it would be
a major step towards visually intelligent systems.

Visual relationship is formulated as a 〈subject, predicate,
object〉 triplet, for example 〈man, ride, horse〉. Accurately
detecting such relationships can be difficult due to the nu-
anced and often vague interactions between objects. Even
seemingly straightforward relationships between easily rec-
ognizable objects such as man and horse can be difficult to
identify in complex scenes.

Prior work in the this area has largely focused on im-
ages.Recent works like Action Genome [8] and Home Ac-
tion Genome [16] offer annotated frames in videos across
different views and hence provide extra signals which can
be beneficial in better localization as well as scene graph
construction. In this paper we build on these extra signals to
improve our classification on exocentric(third person view).
Further we use ensembling at different pyramid levels of
classification to capture objects of different size.

Previous work in scene graph construction has largely
focused on multi-stage pipelines [13, 27, 28, 32]. First, ob-
ject detector is applied to identify all objects in a given im-
age. Then relationship model is used to predict relationship
predicates for pairs of detected objects. Relationship model
is typically structured as pairwise prediction, and takes as
input features from pairs of objects for which the relation-
ship is predicted [13, 11]. Pairwise prediction has a signifi-
cant drawback where by only focusing on a specific object
pair the model can miss important global context informa-
tion. This can lead to scene misinterpretation and incorrect
prediction.

To address this problem recent work has explored ways
to incorporate global contextual information into relation-
ship prediction. The majority of proposed approaches in
this category define a graph over detected objects, and prop-
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Figure 1: Pipeline for classification module.Individual en-
semble of classifiers are applied on each views. The clas-
sifiers are applied on boxes in exocentric views while for
egocentric view classifiers are applied on entire frame. The
resultant softmax scores are then fed into Integration net-
work along with features from both frames to get final pre-
dictions.

agate information through this graph to extract global con-
text [28, 24]. The graph is pre-computed ahead of time as
another stage in the pipeline following object detection, and
is not modified after that. Incorporating information from
the graph does provide additional context that can aid pre-
diction. However, fixed structure can contain significant er-
rors that the relationship model is unable to fix. Missing
and/or incorrect vertices can propagate wrong information
that can be amplified during the prediction stage.

In this work we take a different approach and instead
learn a graph representation between objects by applying
multiple layers of self-attention. Given an object, self-
attention allows the model to focus on relevant other objects
within the image. The process can be thought of as cre-
ating “soft” edges between objects in a directed weighted
graph. Unlike previous approaches, we don’t assume any
pre-existing structure or order, and attend over all objects
found during the detection phase. During training, the self-
attention layers are optimised for relationship prediction, so
the model learns how to optimally extract contextual infor-
mation for the target task. We found that that a significant
portion of performance gain is achieved by adding multi-
head self-attention.

3. Related Work

3.1. Visual Relationship Detection

The visual relationship detection task is formalized first
by Lu et al. [13]. In the current literature, this task is
also treated as a related task to scene graph parsing, where
a scene graph is the visually grounded graph with local-
ized objects as nodes and pairwise predicates as the edges.
In this case, the visual relationship detection task is con-
strained to generating valid scene graphs. This is referred
to as the graph constraint where given an object pair, only
one predicate class is predicted. We follow most existing
work and investigate both tasks simultaneously by evaluat-
ing with and without the graph constraint.

Most work in this area follow the initial pipeline from
[13] to apply a standard object detection pipeline with off-
the-shelf fine-tuned weights to predict objects, followed by
predicate classification [13, 33, 29, 27, 1, 30, 11, 23, 28, 25].
We follow this protocol to disentangle object detection er-
ror with relationship detection and focus on reasoning over
the relationships. Many of these works then apply pairwise
classification model similar to [13] which, given two pro-
posed objects from the detection pipeline, independently
make a prediction for each predicate class. Some excep-
tion include [31] which learn embeddings of objects and
predicates and map their features to a shared space for in-
ference. Among these Associative Embedding use a graph
contrastive loss to train object embedding that capture graph
information[15]. Recently, similar work improves over this
by applying insights particular to visual relationships and
introducing new loss functions to learn over both positive
and negative relationship examples, pushing performance
to new state-of-art[32]. Here we investigate an orthogonal
direction and instead focus on learning global context. We
show that self-attention is sufficient to capture the global
context and achieve competitive performance using stan-
dard pairwise relationship classifier with cross entropy loss.

3.2. Context

Prior to visual relationship detection, the use of con-
text information has been studied by numerous works in
object understanding for recognition [6, 14] and detection
[3, 20, 26]. context in generating sentence from image[5].
Since the formal definition of visual relationship detection
by [13], recent works depart from this initial paradigm
[15, 28, 24, 31] to incorporate contextual information. [28]
show the importance of semantic prior and sub-structures
that exist within a scene graph and propose to use a recur-
rent model (LSTM) to learn new embedding that captures
the contextual information. Similarly, Graph R-CNN apply
graph convolutional network (GCN) to capture contextual
information [24]. However both rely on pre-defined struc-
ture (order in[28] and neighbor graph in [24]). In contrast,
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we use Transformer[22] encoder’s self-attention to learn
how to capture the context.

3.3. Attention

Our work leverages the Transformer [22] self-attention
mechanism from natural language processing. We adopt
ideas such as scaled dot-product attention and multi-head
attention. Prior work [24, 17] that apply attention in vi-
sual relationship detection start by defining a nearest neigh-
bor graph. Attention is used to capture information about
this graph structure by encoding it similar to graph convolu-
tional network (GCN)[9]. In particular Graph R-CNN[24]
adds attention to GCN and generates new embedding for
each object. Here, the attention is a predetermined set of
weights generated from pairwise similarity of the object
features. Graph self-attention [17] embed a pair of object
features and linguistic relationships jointly using attention
mechanisms. However, their attention is also computed
over a neighborhood graph similar to Graph R-CNN. In
contrast, we use attention as a mechanism to directly extract
useful information. Our model is based on self-attention
without using pre-defined graph structure.

4. Approach
Visual relationship detection/scene graph construction is

the joint task of detecting objects and relationships between
them in the form of triplets 〈subject, predicate, object〉.
Both subject and object are objects in the traditional detec-
tion setting and share a common set of object classes, while
predicates are represented by a separate set of relationship
classes. Our approach, called Classify, Attend and Predict
(CAP), aims to dynamically infer relationship graph be-
tween objects by applying self-attention. Information from
this graph is then encoded into representation of each ob-
ject. Updated representations contain relevant context in-
formation, and are used to predict relationships between
objects.The full architecture for our approach is shown in
Figure 2.

Given a video and n labelled objects , in the annotated
frames, the task is to correctly label the boxes and identify
relationship between the human subject and the object, if
there exists one. We use [x1, ..., xn] to denote the given ob-
ject bounding boxes where each xi ∈ Rd is represented
by a set of features. Following the classification stage ,
we apply multiple layers of self-attention to encode rele-
vant global context information. Each self-attention layer
can be thought of as inferring a directed weighted graph
between objects with edge weights given by the attention
softmax coefficients. Graph construction is dynamic, and
the model learns what information to focus on during the
training phase. This is in contrast with previous work where
graph is prebuilt in a separate stage and kept fixed during
model training [28, 24]. After self-attention, updated rep-

resentations [x̂1, ..., x̂n] are passed to the pairwise relation-
ship classifier to get predicate probability. These predicated
probabilities are then fed into a gradient boosting model that
also accepts features from the raw boxes and video features
extracted from a 3d CNN model. In the following sections
we describe each stage in detail.

4.1. Box Classification in Multi Views

We follow the existing literature in object classifica-
tion to predict the labels for objects in both egocentric (first
person view) as well as exocentric(third person view). We
trained individual classifiers first on each of the views. As
shown in figure 2, the classofier trained on exocentric views
could have a difficult time in identifying tiny and/or obfus-
cated objects. Additionally side views in exocentric views
might provide additional useful information for classifica-
tion. So a joint classification module as shown in figure 2
learns from both the views and fixes the mistakes from each
of the individual views. We use an ensemble of classifiers
for each of the views. We then take the SoftMax scores
from both the classifiers and pass them through our integra-
tion network. The integration network comprises of a bunch
of mlp layers with additional non-linearity. The integration
network also looks at the image features from both the im-
ages .It thus learns from both the views and can classify ob-
jects with a much higher success rate. The final confidence
from this model as well as the spatial visual and semantic
features extracted from the boxes are fed into the relation-
ship module.

Visual Features. Visual features are taken from the
CNN classifiers . These features capture visual information
about the object by encoding part of the image that corre-
sponds to object’s bounding box from the exocentric view
as well as entire image from the egocentric view. We pool
the features to have consistent size to be fed in the relation-
ship modules.

Spatial Features. Spatial features capture geometric in-
formation of the object within an image. Relationships such
as on, under and inside of are highly dependent on object
positioning in a given scene. To incorporate this informa-
tion we compute features such as coordinates of the bound-
ing box, its height and width, total area etc.

Semantic Features. Recent work found that semantic
features generated from statistics between object classes
and predicates can significantly improve model perfor-
mance [28, 32]. . When limited training data is avail-
able, incorporating prior information on object-predicate
co-occurrence can both accelerate training and make the
model more robust. We use features such as the predicted
object class and statistics on predicates that appear with this
class, to summarize relevant semantic information.
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Figure 2: Classify, Attend and Predict model architecture. Classify: object classification is done on bounding boxes
by running classifier module on exocentric and egocentric views. Visual, spatial and semantic features are extracted for
each bounding box to get a representation . Attend: multiple layers of multi-head self-attention are applied to get updated
representations. Each self-attention layer dynamically creates a weighted directed graph between detected objects with edge
weights given by attention softmax coefficients. Predict: updated representations are passed to the relationship classifier to
predict relationship class for each candidate pair of objects. These results along with other extracted features from I3D as
well as other features are passed to XGB model for final predictions

4.2. Global Context Through Self-Attention

The majority of proposed models for visual relationship
detection operate on pairs of objects found during the de-
tection stage. Object features are generated independently
of each other, so the pairwise model is only able to capture
information local to the two objects. As we discussed, such
architecture has a significant drawback where by focusing
only on specific object pair, the model loses global context
information. This is particularly problematic in cluttered
scenes where many objects are in close proximity to one
another and have common relationships. Pairwise models
are unable to jointly reason about nearby objects, and this
can lead to incorrect predictions. Zhang et al., [32] found
that this is the predominant mode of failure for many such
models.

We address this limitation in the attend stage. The main
idea behind this stage is to treat all detected objects as global
context information. However, given a target object, only
part of this context is generally relevant for relationship

prediction. Consequently, the model also needs to selec-
tively focus on specific objects within the context to ex-
tract the salient information. We propose to achieve this by
using multiple layers of self-attention. Each self-attention
layer is applied to all detected objects, and softmax atten-
tion weights determine which objects contain useful infor-
mation for relationship prediction. This information is then
aggregated together and encoded into object representation.
Updated representations contain both information about the
object, and the relevant context around it. Stacking multiple
layers of self-attention enables the model to encode increas-
ingly more complex interactions between objects.

A number of attention architectures have been devel-
oped, in this work we focus on the recently proposed Trans-
former encoder with multi-head self-attention [22]. Us-
ing X ∈ Rn×d to denote the concatenated together rep-
resentations from all objects [x1, ..., xn], Transformer self-
attention maps X to a new representation X̂ of the same
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Figure 3: Example self-attention graphs inferred by our model. In each figure, edges with largest attention weights are shown
for a target detected object (green box). Edges are indicated as blue lines with thickness is proportional to softmax weights.
Softmax activations are taken from one head in the first attention block. The predicted relationship triplet for each target
object is shown in red.

size and order. Formally, this mapping is computed as:

X̂ = LayerNorm
(

MLP(Z) + Z
)

Z = LayerNorm
(

MultiHead(X) +X
)

MultiHead(X) =
(
head1||...||headh

)
WO

headi(X) = softmax

(
(XWQ

i )(XWK
i )>√

d

)(
XWV

i

)
(1)

where WQ
i ,WK

i ,WV
i ∈ Rd×d and WO ∈ Rhd×d are the

learned weights for multi-head self-attention with h heads,
|| denotes concatenation and MLP is a feed forward layer.
Similar to the Transformer encoder [22], we apply resid-
ual connections after attention and MLP operations, and
set all layer dimensions to d. The dimensionality can be
readily changed by applying another MLP projection. For
each attention head, global context is presented by the lin-
early transformed object representations XWV

i . Softmax
attention then enables the model to focus on specific ob-
jects within this context. To draw parallels with previous
work on graph-based relationship prediction, the n × n at-
tention tensor can be thought of as an adjacency matrix for
a weighted densely connected relationship graph. Informa-
tion from this graph is encoded into the representation of
each object by combining vertex representations with soft-
max edge weights. During training the model learns how to
effectively focus on relevant objects in each scene to max-
imise relationship prediction accuracy.

4.3. Relationship Prediction

Our relationship prediction module consists of two
stages. In the first stage we use an attention based model
to predict relationship scores between a subject and an ob-
ject. In the second stage these scores along with other fea-
tures described in the previous section as well as I3D fea-
tures extracted from video are fed into an gradient boosting
tree to make the final predictions. We now describe these
stages in details below. Following the attention stage, we
apply pairwise prediction to infer relationships for each pair
of objects. In contrast to existing pairwise models, we use
the updated representations x̂i that incorporate global con-
text information. We define the probability of a relationship
triplet 〈xi, k, xj〉 as:

p(xi, k, xj) = p(k|x̂i, x̂j)p(xi)p(xj) (2)

where p(k|x̂i, x̂j) is the probability of predicate class k
given updated representations x̂i and x̂j , and p(xi), p(xj)
are object class probabilities from the detection model. This
model thus favours predictions where both object and pred-
icate probabilities are high.

There are many possible architecture choices for
p(k|x̂i, x̂j), in this work we use an MLP with a softmax
output layer that generates probabilities for all relationship
predicate classes. This model takes as as input concate-
nated representations from x̂i and x̂j , together with addi-
tional pairwise spatial and semantic features. The features
introduced in Section 4.1 are extracted for each object in-
dividually, and can be enhanced when pairs of objects are
considered. For example, for spatial features we can now
compute distance between corresponding bounding boxes
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and their overlap. Similarly, we can narrow down possi-
ble relationship predicates given the two object classes and
estimate their likelihoods from training data counts. These
features provide additional prior information that can aid
prediction, and we pass them to the pairwise classifier to-
gether with updated object representations.

During training we jointly optimize attention and pair-
wise classifier weights. For each training image we first
pass it through the classification model to get features for
all ground truth objects and their bounding boxes. We then
use the target relationship triplets 〈xi, k, xj〉 to optimize the
model with the log likelihood objective:

L = −
∑

〈xi,k,xj〉

log
(
p(k|x̂i, x̂j)

)
(3)

The gradients from this loss are back-propagated to jointly
update the classifier and self-attention layers.

At inference, we first use the classification model to get
scores for the bounding boxes. We then extract visual, spa-
tial and semantic features for each object, aggregate them
together and pass through self-attention layers to get up-
dated representations. Finally, the pairwise relationship
classifier is applied to all object pairs to get predicate class
probabilities. These class probabilities are then passed onto
an XgBoost Classifier.

Now we describe our approach to incorporating frame-
level and video-level representations into the relationship
prediction module. We begin by fine-tuning the Kinetics
pre-trained I3D on the Home Action Genome dataset for
the human action recognition task. Then we obtain frame-
level and video-level representations by feeding each video
into the trained I3D. The frame level representations are
obtained from the 3D ConvNets in both streams, and the
video-level representations are the pre-softmax logits from
the penultimate layer of I3D.

The frame-level and video-level representations, to-
gether with the relationship prediction scores predicted by
the self-attention network, are then fed into the second stage
XGBoost to obtain the final relationship prediction. We ad-
ditionally add several manually designed features to XG-
Boost, including (1) spatial features that encode the bound-
ing box coordinates of subjects and objects, their relative
position, IOU, etc., and (2) semantic features that encode
the frequency of subjects and objects and the frequency of
each predicate given a specific subject-object pair.

Compared to conventional scene graph generation
datasets, where the predictions are evaluated using indi-
vidual subject-predicate-object triplets, the Home Action
Genome dataset requires the model to accurately iden-
tify each possible predicate between subject-object pairs.
Specifically, each subject-object pair may have more than
one predicates and even sets of predicates, and the model

Table 1: Results on the Scene Graphh Generation Task in
Home Action Genome

LeaderBoard - Top3 Teams
Team Score recall@10 recall@20
IMBA 0.76569 0.72183 0.80955
Layer6 0.68437 0.63398 0.73476
AIST & DENSO 0.65797 0.59636 0.71958

needs to correctly predict all these predicates in order to ob-
tain full score.

The predicted relationship triplets are sorted according to
the joint object-predicate probability p(xi, k, xj) (see Equa-
tion 2) and top triplets are used as the final prediction.

5. Evaluation and Results
We evaluated the model on the code provided by the

competition hosts and present the results in the table 1 on
the Home Action Genome Dataset [16]. We present the re-
call@10 and recall@20 results.The training set comprises
of 2624 videos comprising of 119,919 annotated frames
having over 1 million annotated relationships.There are 25
different relationship classes and 85 different object classes
in the dataset. The evaluation metric was PRDCLS which
removes the detector bias allowing us to focus specifically
on relationship classification.

6. Conclusion
We described our winning entry for the Home Action

Genome competition 2021, where we proposed a highly ef-
fective and novel pipeline for the task of scene graph gener-
ation in videos.
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